356 research outputs found

    The Nardus-rich communities in the northern Apennines (N-Italy): a phytosociological, ecological and phytogeographical study

    Get PDF
    Secondary grasslands dominated by Nardus stricta are an anthropogenic vegetation type that occurs widely through the Europe from lowlands to mountains. These communities have been recently recognized by the European Community as a habitat of priority interest. The aim of the study is to perform a detailed and complete phytosociological scrutiny of this vegetation in the northern Apennines. Further aims are to detect the factors controlling the floristic variation within these communities and to analyse the variations of Nardus grasslands along a latitudinal gradient from the northern Alps to the southern Apennines. We processed a set of 134 phytosociological relevĂ©s from the northern Apennines through a cluster analysis based on Kendall’s tau dissimilarity measure. Results showed the occurrence of two different associations of Nardus grasslands (Carlino caulescentis-Nardetum strictae and Violo ferrarinii-Nardetum strictae). Relations between their floristic composition and environmental variables were detected through Redundancy Analysis. The matrix of habitat factors included topographic variables and variables derived from Ellenberg’s indicator values. Elevation was the factor explaining most of the floristic variation. From the comparison of 44 synoptic tables from the Alps, Carpathians and Apennines, processed through a NMDS ordination, we detected two main phytogeographic and ecological thresholds along the latitudinal gradient

    Genetic and ecological consequences of recent habitat fragmentation in a narrow endemic plant species within an urban context

    Get PDF
    Understanding the timescales that shape spatial genetic structure is pivotal to ascertain the impact of habitat fragmentation on the genetic diversity and reproductive viability of long-lived plant populations. Combining genetic and ecological information with current and past fragmentation conditions allows the identification of the main drivers important in shaping population structure and declines in reproduction, which is crucial for informing conservation strategies. Using historic aerial photographs, we defined the past fragmentation conditions for the shrub Conospermum undulatum, a species now completely embedded in an urban area. We explored the impact of current and past conditions on its genetic layout and assessed the effects of genetic and environmental factors on its reproduction. The historically high structural connectivity was evident in the genetics of the species. Despite the current intense fragmentation, we found similar levels of genetic diversity across populations and a weak spatial genetic structure. Historical connectivity was negatively associated with genetic differentiation among populations and positively related to within-population genetic diversity. Variation partitioning of reproductive performance explained ~ 66% of the variance, showing significant influences for genetic (9%), environmental (15%), and combined (42%) fractions. Our study highlights the importance of considering the historical habitat dynamics when investigating fragmentation consequences in long-lived plants. A detailed characterization of fragmentation from 1953 has shown how low levels of genetic fixation are due to extensive gene flow through the non-fragmented landscape. Moreover, knowledge of the relationships between genetic and environmental variation and reproduction can help to implement effective conservation strategies, particularly in highly dynamic landscapes

    Intraspecific Functional Trait Response to Advanced Snowmelt Suggests Increase of Growth Potential but Decrease of Seed Production in Snowbed Plant Species

    Get PDF
    In ecological theory, it is currently unclear if intraspecific trait responses to environmental variation are shared across plant species. We use one of the strongest environmental variations in alpine ecosystems, i.e., advanced snowmelt due to climate warming, to answer this question for alpine snowbed plants. Snowbeds are extreme habitats where long-lasting snow cover represents the key environmental factor affecting plant life. Intraspecific variation in plant functional traits is a key to understanding the performance and vulnerability of species in a rapidly changing environment. We sampled snowbed species after an above-average warm winter to assess their phenotypic adjustment to advanced snowmelt, based on differences in the natural snowmelt dynamics with magnitudes reflecting predicted future warming. We measured nine functional traits related to plant growth and reproduction in seven vascular species, comparing snowbeds of early and late snowmelt across four snowbed sites in the southern Alps in Italy. The early snowbeds provide a proxy for the advanced snowmelt caused by climatic warming. Seed production was reduced under advanced snowmelt in all seed-forming snowbed species. Higher specific leaf area (SLA) and lower leaf dry matter content (LDMC) were indicative of improved growth potential in most seed-forming species under advanced snowmelt. We conclude, first, that in the short term, advanced snowmelt can improve snowbed species’ growth potential. However, in the long term, results from other studies hint at increasing competition in case of ongoing improvement of conditions for plant growth under continued future climate warming, representing a risk for snowbed species. Second, a lower seed production can negatively affect the seed rain. A reduction of propagule pressure can be crucial in a context of loss of the present snowbed sites and the formation of new ones at higher altitudes along with climate warming. Finally, our findings encourage using plant functional traits at the intraspecific level across species as a tool to understand the future ecological challenges of plants in changing environments

    Expression Levels of Some Antioxidant and Epidermal Growth Factor Receptor Genes in Patients with Early-Stage Non-Small Cell Lung Cancer

    Get PDF
    This study was aimed at: (i) investigating the expression profiles of some antioxidant and epidermal growth factor receptor genes in cancerous and unaffected tissues of patients undergoing lung resection for non-small cell lung cancer (NSCLC) (cross-sectional phase), (ii) evaluating if gene expression levels at the time of surgery may be associated to patients' survival (prospective phase). Antioxidant genes included heme oxygenase 1 (HO-1), superoxide dismutase-1 (SOD-1), and -2 (SOD-2), whereas epidermal growth factor receptor genes consisted of epidermal growth factor receptor (EGFR) and v-erb-b2 erythroblastic leukaemia viral oncogene homolog 2 (HER-2). Twenty-eight couples of lung biopsies were obtained and gene transcripts were quantified by Real Time RT-PCR. The average follow-up of patients lasted about 60 months. In the cancerous tissues, antioxidant genes were significantly hypo-expressed than in unaffected tissues. The HER-2 transcript levels prevailed in adenocarcinomas, whereas EGFR in squamocellular carcinomas. Patients overexpressing HER-2 in the cancerous tissues showed significantly lower 5-year survival than the others

    Disciplinary problems among high achiever students: the types and the causes

    Get PDF
    This qualitative study has been done to 24 teachers and 72 students from various secondary schools in Penang, Malaysia, in order to investigate the effect of between class ability grouping (BCAG) on high achiever secondary school students. Studies reported that BCAG triggered correspondence bias among teachers, which eventually affect them to show different perception and expectations towards high achiever classes (HAC) and low achiever classes (LAC) students. Symbolic interaction theories explained that individuals tend to be affected by others’ expectation, and therefore behave in a way they were expected to. Therefore, according to the previous studies on BCAG, it was assumed that HAC students would achieve better and would not be significantly involved in disciplinary problems. After semi-structured interview had been conducted in order to collect the data, and two-cycled analyses method, namely In-Vivo and Thematic Analyses had been operated in order to analyze the massive amount of qualitative data, the it was discovered that HAC students were involved with disciplinary problems, such as being disrespectful to teachers, paying less attention in the classroom, neglecting assignments and doing external work during classes. Other findings of this study showed that the disciplinary problems among HAC are related to their self-esteem types due to locus of control difference, as well as bigger issues apart from the competition among themselves. School management system, BCAG itself, reciprocal envy between HAC and LAC students, as well as their inclination towards tuition centers contributed to disciplinary problems among HAC students

    Experimental warming differentially affects vegetative and reproductive phenology of tundra plants

    Get PDF
    Rapid climate warming is altering Arctic and alpine tundra ecosystem structure and function, including shifts in plant phenology. While the advancement of green up and flowering are well-documented, it remains unclear whether all phenophases, particularly those later in the season, will shift in unison or respond divergently to warming. Here, we present the largest synthesis to our knowledge of experimental warming effects on tundra plant phenology from the International Tundra Experiment. We examine the effect of warming on a suite of season-wide plant phenophases. Results challenge the expectation that all phenophases will advance in unison to warming. Instead, we find that experimental warming caused: (1) larger phenological shifts in reproductive versus vegetative phenophases and (2) advanced reproductive phenophases and green up but delayed leaf senescence which translated to a lengthening of the growing season by approximately 3%. Patterns were consistent across sites, plant species and over time. The advancement of reproductive seasons and lengthening of growing seasons may have significant consequences for trophic interactions and ecosystem function across the tundra

    A review of open top chamber (OTC) performance across the ITEX Network

    Get PDF
    Open top chambers (OTCs) were adopted as the recommended warming mechanism by the International Tundra Experiment (ITEX) network in the early 1990’s. Since then, OTCs have been deployed across the globe. Hundreds of papers have reported the impacts of OTCs on the abiotic environment and the biota. Here we review the impacts of the OTC on the physical environment, with comments on the appropriateness of using OTCs to characterize the response of biota to warming. The purpose of this review is to guide readers to previously published work and to provide recommendations for continued use of OTCs to understand the implications of warming on low stature ecosystems. In short, the OTC is a useful tool to experimentally manipulate temperature, however the characteristics and magnitude of warming varies greatly in different environments, therefore it is important to document chamber performance to maximize the interpretation of biotic response. When coupled with long-term monitoring, warming experiments are a valuable means to understand the impacts of climate change on natural ecosystems

    Retrospective immunophenotypical evaluation of MET, PD-1/PD-L1, and mTOR pathways in primary tumors and pulmonary metastases of renal cell carcinoma: the RIVELATOR study addresses the issue of biomarkers heterogeneity

    Get PDF
    Aim: In renal cell carcinoma (RCC), tumor heterogeneity generated challenges to biomarker development and therapeutic management, often becoming responsible for primary and acquired drug resistance. This study aimed to assess the inter-tumoral, intra-tumoral, and intra-lesional heterogeneity of known druggable targets in metastatic RCC (mRCC). Methods: The RIVELATOR study was a monocenter retrospective analysis of biological samples from 25 cases of primary RCC and their paired pulmonary metastases. The biomarkers analyzed included MET, mTOR, PD-1/PD-L1 pathways and the immune context. Results: High multi-level heterogeneity was demonstrated. MET was the most reliable biomarker, with the lowest intratumor heterogeneity: the positive mutual correlation between MET expression in primary tumors and their metastases had a significantly proportional intensity (P = 0.038). The intratumor heterogeneity grade was significantly higher for the mTOR pathway proteins. Combined immunophenotypical expression patterns and their correlations with the immune context were uncovered [i.e., mTOR expression in the metastases positively correlated with PD-L1 expression in tumor-infiltrating lymphocytes (TILs), P = 0.019; MET expression was related to PD-1 expression on TILs (P = 0.041, ρ = 0.41) and peritumoral lymphocytes (RILs; P = 0.013, ρ = 0.49)], suggesting the possibility of predicting drug response or resistance to tyrosine kinase, mTOR, or immune checkpoint inhibitors. Conclusions: In mRCC, multiple and multi-level assays of potentially predictive biomarkers are needed for their reliable translation into clinical practice. The easy-to-use immunohistochemical method of the present study allowed the identification of different combined expression patterns, providing cues for planning the management of systemic treatment combinations and sequences in an mRCC patient population. The quantitative heterogeneity of the investigated biomarkers suggests that multiple intralesional assays are needed to consider the assessment reliable for clinical considerations

    Experimental warming differentially affects vegetative and reproductive phenology of tundra plants

    Get PDF
    Rapid climate warming is altering Arctic and alpine tundra ecosystem structure and function, including shifts in plant phenology. While the advancement of green up and flowering are well-documented, it remains unclear whether all phenophases, particularly those later in the season, will shift in unison or respond divergently to warming. Here, we present the largest synthesis to our knowledge of experimental warming effects on tundra plant phenology from the International Tundra Experiment. We examine the effect of warming on a suite of season-wide plant phenophases. Results challenge the expectation that all phenophases will advance in unison to warming. Instead, we find that experimental warming caused: (1) larger phenological shifts in reproductive versus vegetative phenophases and (2) advanced reproductive phenophases and green up but delayed leaf senescence which translated to a lengthening of the growing season by approximately 3%. Patterns were consistent across sites, plant species and over time. The advancement of reproductive seasons and lengthening of growing seasons may have significant consequences for trophic interactions and ecosystem function across the tundra.publishedVersio
    • 

    corecore